CSE-5368 Neural Networks
Exercise Problems 06

- Consider the expression:

$$
f(x, y, z)=\max \left(x^{2} y, z\right)+x z
$$

Draw the computational graph for this expression and compute the numerical values of the partial derivatives with respect to x, y, and z given the inputs:

$$
x=2, \quad y=3, \quad z=5
$$

$\delta f(x, y, z)$		
δx	$\frac{\delta f(x, y, z)}{\delta y}=$	$\frac{\delta f(x, y, z)}{\delta z}=$

CSE-5368 Neural Networks
Exercise Problems 06

- Consider the expression:

$$
\left.f(x, y)=\frac{1}{x y}+[\max (x, y))\right]^{2}
$$

Draw the computational graph for this expression and compute the partial derivatives with respect to x and y given the inputs:

$$
x=-2, \quad y=3
$$

CSE-5368 Neural Networks Exercise Problems 06

- Consider the expression:

$$
f(x)=[10-\max (x, y *(q+z))]^{2}
$$

Draw the computational graph for this expression and compute the partial derivatives with respect to $\mathrm{x}, \mathrm{y}, \mathrm{q}$, and z via backpropagation given the input:

$$
x=1, \quad y=2, \quad q=-1, \quad z=5
$$

CSE-5368 Neural Networks Exercise Problems 06

- Consider the expression:

$$
f(x, y, z)=\min (x y, z)+x z
$$

Use the computational graph for this expression to compute the numerical values of the partial derivatives with respect to x, y, and z given the inputs:

$$
x=2, \quad y=7, \quad z=20
$$

$\frac{\delta f(x, y, z)}{\delta x}=$	$\frac{\delta f(x, y, z)}{\delta y}=$	$\frac{\delta f(x, y, z)}{\delta z}=$

CSE-5368 Neural Networks
Exercise Problems 06

- Consider the expression:

$$
\left.f(x, y)=\frac{1}{x y}+[\max (x, y))\right]^{2}
$$

Draw the computational graph for this expression and compute the partial derivatives with respect to x and y given the inputs:

$$
x=-2, \quad y=3
$$

CSE-5368 Neural Networks Exercise Problems 06

- Consider the expression: $\boldsymbol{f}(\boldsymbol{x})=\frac{(x+y)}{\boldsymbol{y}} *[\boldsymbol{\operatorname { m i n }}(y, \boldsymbol{z})]^{2}$

Given the inputs $\quad x=2, \quad y=4, \quad z=-3$
Draw the computational graph.
Calculate the $\frac{\delta f(x, y, z)}{\delta x}$ and $\frac{\delta f(x, y, z)}{\delta y}$ and $\frac{\delta f(x, y, z)}{\delta z}$ and show all the numerical values of the backward pass.

Show all the numerical values as they flow in the forward and backward path.

CSE-5368 Neural Networks Exercise Problems 06

1. Consider the expression: $f(x)=\frac{(x-y)}{y}+(x * y)$

Given the inputs

$$
x=25, \quad y=5
$$

Draw the computational graph.
Calculate the $\frac{\delta f(x, y)}{\delta x}$ and $\frac{\delta f(x, y)}{\delta y}$
Show all the numerical values as they flow in the forward and backward path.

